Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis.

نویسندگان

  • J J Ye
  • M H Saier
چکیده

Lactobacillus brevis accumulates lactose and nonmetabolizable lactose analogues via sugar/H+ symport, but addition of glucose to the extracellular medium results in rapid efflux of the free sugar from the cells due to the uncoupling of sugar transport from proton transport. By using vesicles of L. brevis cells, we recently showed that these regulatory/effects could be attributed to the metabolite-activated ATP-dependent protein kinase-catalyzed phosphorylation of serine-46 in the phosphocarrier protein HPr [HPr(Ser-P)] of the phosphotransferase system and that a mutant form of HPr with the serine-46-->aspartate replacement ([S46D]HPr) is apparently locked in the seryl phosphorylated conformation. We here demonstrate that [S46D]HPr binds directly to inside-out membrane vesicles of L. brevis that contain the lactose permease. Sugar substrates of the permease markedly and specifically stimulate binding of [S46D]HPr to the membranes while certain transport inhibitors such as N-ethylmaleimide block binding. The pH dependency for binding follows that for transport. Wild-type HPr and the [S46A]HPr mutant protein did not appreciably compete with [S46D]HPr for binding to the permease. These results provide evidence for the direct interaction of HPr(Ser-P) with an allosteric site on the lactose/proton symporter of L. brevis for the purpose of regulating sugar accumulation in response to the metabolic needs of the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis.

Lactobacillus brevis takes up glucose and the nonmetabolizable glucose analog 2-deoxyglucose (2DG), as well as lactose and the nonmetabolizable lactose analoge thiomethyl beta-galactoside (TMG), via proton symport. Our earlier studies showed that TMG, previously accumulated in L. brevis cells via the lactose:H+ symporter, rapidly effluxes from L. brevis cells or vesicles upon addition of glucos...

متن کامل

Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis.

The heterofermentative lactic acid bacterium Lactobacillus brevis transports galactose and the nonmetabolizable galactose analogue thiomethyl-beta-galactoside (TMG) by a permease-catalyzed sugar:H(+) symport mechanism. Addition of glucose to L. brevis cells loaded with [(14)C]TMG promotes efflux and prevents accumulation of the galactoside, probably by converting the proton symporter into a uni...

متن کامل

Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion.

We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphoryla...

متن کامل

Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus.

The lactose transport protein (LacS) of Streptococcus thermophilus is composed of a translocator domain and a regulatory domain that is phosphorylated by HPr(His approximately P), the general energy coupling protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). Lactose transport is affected by the phosphorylation state of HPr through changes in the activity of the Lac...

متن کامل

The doubly phosphorylated form of HPr, HPr(Ser~P)(His-P), is abundant in exponentially growing cells of Streptococcus thermophilus and phosphorylates the lactose transporter LacS as efficiently as HPr(His~P).

In Streptococcus thermophilus, lactose is taken up by LacS, a transporter that comprises a membrane translocator domain and a hydrophilic regulatory domain homologous to the IIA proteins and protein domains of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The IIA domain of LacS (IIALacS) possesses a histidine residue that can be phosphorylated by HPr(His~P), a protein component...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 92 2  شماره 

صفحات  -

تاریخ انتشار 1995